skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ermis, Ayca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The model of personalized thermal comfort can be learned via various machine learning algorithms and used to improve the individuals’ thermal comfort levels with potentially less energy consumption of HVAC systems. However, the learning of such a model typically requires a substantial number of thermal votes from the considered occupant, and the environmental conditions needed for collecting some votes may be undesired by the occupant in order to obtain a model with good generalization ability. In this paper, we propose to use a meta-learning algorithm to reduce the required number of personalized thermal votes so that a personalized thermal comfort model can be obtained with only a small number of feedback. With the learned meta-model, we derive a method based on the backpropagation of neural networks to quickly identify the best environmental and personal conditions for a specific occupant. The proposed identification algorithm has an additional advantage that the thermal comfort, indicated by the mean thermal sensation value, improves incrementally during the data collection process. We use the ASHRAE global thermal comfort database II to verify that the meta-learning algorithm can achieve an improved prediction accuracy after using 5 thermal sensation votes from an occupant to make adaptations. In addition, we show the effectiveness of the fast identification algorithm for the best personalized thermal environmental conditions with a thermal sensation generation model built from the PMV model. 
    more » « less
  2. null (Ed.)